

Title
By

Intro THE
Mars science Lab:

OF
CHALLENGE

COMPLEXITY

By RICHARD COOK

One of NASA’s great strengths over the past fifty years has been our ability to execute complex, one
of-a-kind projects. In some cases, we have literally written the book on how to carry out programs with
difficult technological, scientific, or programmatic objectives. It is somewhat surprising, therefore,
that we’ve had significant problems in the past few years with some highly visible, complex projects.
I work on one of those projects, the Mars Science Laboratory (MSL).

54 | ASK MAGAZINE | STORy

’

'

The parachute for NASA s Mars
Science Laboratory (MSL)

being tested inside the world s
largest wind tunnel at Ames

Research Center. An engineer is
dwarfed by the parachute, the

largest ever built to fly on an
extraterrestrial flight. P

h
o

to
 C

re
d

it
: N

A
S

A
/A

m
es

 R
es

ea
rc

h
C

en
te

r/
JP

L
ASK MAGAZINE | 55

-

Artist ’s concept of the
Mars Science Laboratory
in Martian terrain.

Im
ag

e
C

re
d

it
: N

A
S

A
/J

P
L

 C
al

te
ch

56 | ASK MAGAZINE

MSL is the next major step forward in NASA’s Mars Exploration
Program and will address key questions about the past and current
habitability of Mars. The project is also developing critical new
technology for landing on Mars, acquiring and processing surface
samples, and conducting long-duration surface operations. This
is probably the most complex planetary mission that NASA has
ever attempted. As a result, it has stressed our implementation
processes, our technology, our engineering capabilities, and our
people. Although the project hasn’t launched yet, it has been
extraordinarily useful in one regard: demonstrating the challenges
of managing complexity on large-scale programs.

So, what is complexity? The word is frequently thrown
around as a sort of synonym for “difficult.” But it is more than
that. Paraphrasing Webster, “Complexity is the quality of being
intricately combined.” The characteristic that separates complex
projects from merely difficult ones is the number of interconnected
elements that are tied either technically or programmatically.
Flagship efforts are becoming increasingly difficult and complex.
Increased complexity is a primary cause for the challenges we’ve
experienced. The MSL development experience is rich with
examples where our ability (or inability) to effectively manage
complexity has provided valuable lessons.

At the recent Project Management (PM) Challenge in Long
Beach, California, I gave a presentation on those lessons across
domains including technology infusion, margin management,
schedule planning and oversight, and the role of external reviews.
Given space limitations here, I will focus on the connections
between system architecture and complexity.

Defining the right system architecture—the top-level
structural and behavioral relationships between parts of a system—
is critical to managing complexity. So what makes the “right”
system architecture? The easiest answer is, the one that is as simple
as possible but no simpler; the one with the most “separation”
between elements; the one with the simplest interfaces, the most
functional independence, the least reliance on those one-size-fits
all solutions that drive custom-interface accommodation. Greater

complexity and interaction mean increased potential for problems
and increased difficulty in testing to discover them.

Unfortunately, a number of factors frequently undermine
system architecture simplicity. Examples include technology
limitations and complexity, mass/volume constraints, cost, and
the use of heritage hardware. I could mention several examples
of MSL handling systems complexity well, but I’ll start with one
where we didn’t.

ThE ChArACTErISTIC ThAT SEPArATES

CoMPLEx ProJECTS FroM MErELy

DIFFICULT oNES IS ThE NUMbEr oF

INTErCoNNECTED ELEMENTS ThAT

ArE TIED EIThEr TEChNICALLy or

ProGrAMMATICALLy.

We inherited several key aspects of the MSL architecture
from the Mars Exploration Rover program. One example was
having the rover’s avionics control the entire mission from launch
through landing. This architecture was adopted for MSL despite
the fundamentally different functions for launch; cruise; entry,
descent, and landing (EDL); and rover operations. The intent
was to take advantage of the core elements of the rover avionics
(the processor, the power converters) to perform cruise and EDL
functions. Adding additional boxes outside the rover required
accepting the associated cost, schedule, and mass impacts. The
problem with this architecture is that it significantly increased
the complexity of the design by functionally integrating the rover
and cruise/EDL systems. The cruise/EDL system could not be
designed and tested independently from the rover because it was
an integrated system.

-

Spacecraft technicians
at the Jet Propulsion

Laboratory prepare a
space -simulation test of the

Mars Science Laboratory
cruise stage in a facility that
simulates the cold, vacuum

environment of space.

P
h

o
to

 C
re

d
it

: N
A

S
A

/J
P

L
 C

al
te

ch

ASK MAGAZINE | 57

So why was this choice made? We did an early concept
study of a “smart” descent stage. The idea was to put enough
avionics on the descent stage to control the vehicle during cruise
and EDL (the rover would be along for the ride). The primary
reason we didn’t choose that approach is that we have a tendency
in the early phases of a project to base system-design choices
on box-level factors. Because the cost, schedule, and design of
boxes can be coarsely quantified, it is simpler to factor them
into design choices. Less apparent factors like the amount of
input/output a box requires, the interface complexity, fault-
protection implications, and verification challenges—all
byproducts of system complexity—are difficult to quantify
and factor into system decisions. These items typically don’t
manifest themselves until later in the development cycle and
are frequently the source of significant cost growth. By not
adequately factoring this cost-growth risk into the system trade,
we ended up with a design with the fewest number of boxes
rather than the least complex architecture.

Another driver toward functional over-integration is the
pervasive impact electronics technology is having on our core
systems. Unlike the world of thirty years ago, virtually all electronics
we use today come from a commercial sector with different and
diverse technology drivers, not just space applications. The increased
functionality possible with high-density field-programmable gate
arrays (FPGAs), low-voltage parts, and high-speed bus architectures
are dramatic and enabling, but they increase complexity enormously.
The pressure to have “less” hardware and depend more on software
results in highly integrated and highly complex designs.

One associated pitfall is that we don’t approach the
incorporation of these new devices into our systems with the
same degree of rigor we treat other types of technology. That
may partly be due to the perceived maturity of the commercial
components. We frequently have trouble with parts that have a
commercial track record but haven’t been through a full flight-
qualification program. A good success story on MSL was our
efforts to “mature” high-density, radiation-tolerant FPGAs.

58 | ASK MAGAZINE

ThE PrESSUrE To hAvE “LESS” hArDwArE AND DEPEND MorE oN SoFTwArE rESULTS

IN hIGhLy INTEGrATED AND hIGhLy CoMPLEx DESIGNS.

The Mars Reconnaissance Orbiter and other programs had
experienced a series of problems with less dense parts, so MSL
adopted an aggressive program to establish acceptable design
guidelines, packaging/rework approaches, and thermal control/
qualification strategies. The result was that the project did
not experience significant FPGA technology issues during the
build/test campaign.1

The FPGA challenges we did have were associated with
the design complexity caused by functional over-integration.
The large number of logic gates available in modern FPGAs
allows many functions to be combined into a single component.
This does complicate the design effort, although some parts
of the FPGA “code” can be developed by parallel teams. The
verification and validation effort, however, grows dramatically
because so much functionality is combined. Our test methods
don’t really support ways of performing rapid, parallel testing of
a single, highly integrated element. A long serial-test program
is difficult to manage, is brittle to changes and problems, and
can be inappropriately curtailed if schedule pressure mounts.
A design based on a larger number of simpler elements would
permit parallel component testing and (with appropriate interface
definition) simpler system testing as well.

Fault tolerance is another system-architecture driver that can
significantly affect complexity. Inappropriate evaluation of local-
versus-system fault tolerance can dramatically increase complexity
without necessarily improving overall reliability. An example from
MSL was the incorporation of partial redundancy in the core rover
avionics. The mass and volume of the avionics are major drivers
on both the rover configuration and the required capabilities of
the entry, descent, and landing system. Heavier or larger avionics
increase EDL system risk by reducing control-system performance
margins or increasing landing velocity and loads.

Intrinsically, however, avionics fault tolerance is provided
by adding redundant boxes with some degree of cross-strapping.
(Cross-strapping permits redundant boxes to work with other
redundant elements in the system architecture.) On MSL, the

project took an intermediate position of incorporating some
partial avionics redundancy to mitigate box-level failures while
not driving EDL risk adversely. Unfortunately, the resulting
system is neither fish nor fowl from a complexity perspective.
By having a combination of single-string and redundant elements,
the resulting fault-containment architecture is more complex
and more difficult to design, analyze, and verify than either a
single-string or fully redundant design. The marginal increase in
reliability associated with the partial redundancy may not have
been worth the increased complexity.

These are just a few examples of the drivers that can push
a system architecture toward increased complexity. Potential
institutional mitigations could include additional training to
increase our systems engineering expertise on both the sources
and consequences of architectural choices. Additional efforts can
also be made to rigorously review system architecture choices to
understand the long-term implications. Upgrading our cost and
schedule estimation processes to capture the impact of complexity
on cost and schedule risk would also be very useful.

From the perspective of an individual project manager,
establishing simplicity as a programmatic goal is both a symbolic
and a real step toward managing development risk. This is
particularly imperative for projects with profound technical and
engineering challenges. Intrinsically difficult missions like MSL
are made much more challenging if managing complexity gets
inadequate attention. Policy direction advocating simplicity is a
useful first step to keeping complexity contained. ●

richard cook is the deputy project manager of the Mars
Science Laboratory at the Jet Propulsion Laboratory. He is a
veteran of NASA’s Mars Exploration Program, having held key
roles on Mars Pathfinder, Mars rovers Spirit and Opportunity, and
Mars Surveyor ’98.

1. we did have FPGA problems associated with design complexity (we tried to put too much functionality into a given part),
which led to very long delivery delays and test-program challenges. The fundamental part technology worked, however.

